

Reprint 1010

應用「模式輸出統計」校正相對濕度及風的數碼預報

李月嬋、李立信、周真源 & 黃蓓*

*香港城市大學

應用「模式輸出統計」校正相對濕度及風的數碼預報

李月嬋1 李立信1 周真源1 黃蓓2

1香港天文台 2香港城市大學

摘要

香港天文台於 2010 年推出「數碼天氣預報」網頁,以高分辨率電腦數 值模式的直接輸出為基礎,提供香港及鄰近珠三角地區約每十公里網格 點的氣溫及風向風速預測。天文台在 2011 年加強數碼天氣預報服務, 將預報時效由一天增加至三天,並新增相對濕度的預測,同時亦利用以 多元卡爾曼濾波為本的「模式輸出統計」技術,改善了氣溫預報的準確 度。

「模式輸出統計」技術是用作減低電腦數值模式一般存在的系統誤差, 本文會比較不同統計技術,包括多元線性回歸及卡爾曼濾波等模型,在 不同預測時間及空間上的表現,選取最有效的方法以提升相對濕度及風 向風速的預測準確度,以及研究統計模型在不同季節的最佳因子組合。 另外,我們會透過多個天氣個案分析,驗證統計模型的成效。

1. 引言

香港天文台於 2010 年初推出「數碼天氣預報」網頁 (http://www.hko.gov.hk/dfs),提供香港及鄰近珠三角地區每十公里在未來 一天逐小時的氣溫及風向風速預測。在 2011 年初,數碼天氣預報時效 由一天增加至三天,並加入相對濕度的預測。

2011 年初,天文台開始應用「模式輸出統計」技術於網格點上, 來修正氣溫的數碼預報[1]。本文將伸延有關研究至相對濕度及風向風速 的數碼預測。

2. 數據

2.1 預測數據

本文應用了天文台高分辨率電腦模式 Meso-NHM [2] 在 12UTC 預報的未來 72 小時內每 3 小時的 2 米相對濕度、10 米緯向風、10 米經 向風及其他氣象要素。我們選取了 2010 年 9 月 1 日至 2011 年 8 月 31 日之間的直接模式輸出(DMO)數據作研究。表 1 列出多元統計模型的待 選因子。

2.2 實況觀測數據

實況數據方面,我們選取了香港天文台及廣東省氣象局的自動氣 象站在同期錄得的每小時相對濕度、風向及風速的數據。風向及風速的 數據會轉化為緯向風及經向風,與DMO的10米緯向風及10米經向風 作比較。

3. 方法

3.1 建立分析場

由於自動氣象站的分佈並不規則(圖1),而海上亦缺乏自動氣象站 的觀測資料,本文應用了數據處理及繪圖軟件 NCAR Command Language NCL內提供的Cressman逐步修正法[3],依據自動氣象站站點與 0.1×0.1度(約10公里)網格點之間的距離及預設的權重變化,生成覆蓋香 港及珠三角地區合共240個(15×16格;間隔約為10公里)網格點的相對濕 度、緯向風及經向風分析場。

另外,在建立分析場時,我們加入了範圍檢測,把異常的自動氣 象站數據剔除,以減去因個別站點觀測誤差而引致的不正常分析場。檢 測方法包括(1)把低於 0%或高於 100%的相對濕度數據,以及低於 0 米/ 秒或高於 90 米/秒的風速數據移走;(2)與 Meso-NHM 在同一時間的預測 場作比較,把超出模式的平均誤差值三個標準差的自動氣象站數據移 走。這方法在監控電腦模式初始場的品質時亦常有使用。

3.2 「模式輸出統計」技術

在相對濕度預測方面,本文嘗試比較含單一天氣要素(2米相對濕度)及多個天氣要素的線性回歸模型及卡爾曼濾波[4](即包括一元線性回歸(SLR)、多元線性回歸(MLR)、一元卡爾曼濾波(SKF)及多元卡爾曼濾波(MKF))在不同預測時間及空間上的表現。在風向風速預測方面,本文會以10米緯向風及10米經向風為基礎,計算二元線性回歸(2LR)及二元卡爾曼濾波(2KF)(即同時把2米緯向風及2米經向風加入線性方程)的表現,以及與MLR及MKF作比較。

考慮到每季的氣候特徵各有不同,我們把2010年9月至2011年8月 的數據分為四季,即2010年9月至2010年11月(秋季)、2010年12月至2011

年2月(冬季)、2011年3月至2011年5月(春季)和2011年6月至2011年8月(夏季),分別找出不同統計模型在四季及全年(即2010年9月至2011年8月)的最佳因子組合。

線性回歸是假設模式輸出與實況有一定的線性關係。為減少季節 間或季節內轉變對回歸模型的影響,同時保持足夠的訓練數據,我們把 訓練期定為60天,並隨時間每天更新訓練數據,以建立適性線性回歸模 型。而卡爾曼濾波是以遞推方法,根據上一刻狀態的估計值和當前狀態 的觀測值推出當前狀態的估計值的濾波方法,從而計算下一刻的估計 值。它的優點是不受電腦模式升級變化的影響及不需保存大量的歷史數 據。我們利用統計軟件"R" (http://www.r-project.org) 幫助建立適性線性 回歸模型及卡爾曼濾波模型。

3.3 選取合適因子

在選取合適因子方面,為避免出現多共線性(multicollinearity),我 們首先檢驗各個因子間的相關性,若因子間的相關系數大於0.7,位於離 地面較高的因子會先被剔除,然後應用向後剔除法(backward selection) 及AIC(Akaike Information Criterion)統計準則[5]自動選取MLR在各個預 測時間及網格點上的因子組合,並應用於MKF上。

由於MLR/MKF會出現過擬合(overfitting)的情況,引致出現一些不 可靠的預測,我們在選擇因子組合時,也須限制因子的數目。一般來說, 訓練數據的數目是不可多於2的因子數目次方(即2^{BF數B})[6]。以訓練期 為60天計算,最多的因子數目為5。因此,我們會先排列出在各個預測 時間及網格點上,出現次數最多的首5位因子,然後以這5個因子組成的 不同組合,找出最優化的MLR及MKF,以及其最佳因子組合。

在比較不同「模式輸出統計」技術方面,我們分別計算DMO、SLR、

SKF、MLR及MKF在每個預測時間(即3小時預報至72小時的預報,合共 24個預測時間)及覆蓋香港的每個網格點(5×7格)的均方根誤差Root Mean Squared Error (RMSE)及平均誤差Mean Error (ME)。然後再分別計 算它們在所有預測時間及網格點的平均RMSE、最高RMSE及平均ME, 以最小為佳。我們亦會進行 t-測試,檢驗各統計模型的成效是否達5% 顯著水平。

4. 結果

4.1 相對濕度

4.1.1 不同季節的比較

表2為各統計模型,包括SLR、SKF、MLR及MKF,與DMO表現 的比較,而表3則列出MLR及MKF在四季及全年的最佳因子組合,當中 全年的最佳組合是以2米相對濕度及700hPa相對濕度組成。

表 2 顯示 DMO 相對濕度在全年的平均 RMSE 約為 11.17%,而各 模型在全年的平均 RMSE 在 8.64%至 8.85%之間,顯著校正 DMO 相對 濕度的程度高達 20%以上。而在四季中,各模型在夏季的表現最為理 想,其改善率達 35%以上,其次是春季,這顯示電腦模式在較潮濕季節 (春、夏季)會出現較大系統誤差,之後被「模式輸出統計」技術修正過 來。

另外,我們發現 SLR 及 SKF 在秋季的表現並不明顯,其平均 RMSE 與 DMO 的平均 RMSE 的差異未達 5%顯著水平。雖然多元統計模型 (MLR 及 MKF)在秋季略為有效,但其改善率僅 10%左右,顯示電腦模 式在秋季的誤差主要是源自隨機誤差,而非系統誤差。

此外,雖然 MKF 在冬、夏雨季均較 MLR 略為優勝,但 t-測試顯

示 MLR 及 MKF 的技巧在四季及全年均沒有明顯差異,未達 5%顯著水平。

由於不同季節的 MLR/MKF 的最佳因子組合均不一樣(表 3),我們 嘗試檢測以全年數據選出的最佳因子組合(即 2 米相對濕度及 700hPa 相 對濕度)組成的 MLR 及 MKF 在每季的表現,並與每季 MLR 及 MKF 作 比較,結果發現它們均能改善 DMO 相對濕度預測,但 MLR 及 MKF 兩 者之間的表現則沒有明顯差別。因此,我們認為四季均可應用以 2 米相 對濕度及 700hPa 相對濕度組成的 MLR/MKF 修正 DMO 相對濕度預測。 而由於 MKF 所得出的最高 RMSE 及平均 ME 在四季普遍較低,我們認 為 MKF 技術較為可取。

4.1.2 時間及空間的變化

以全年數據為基礎,圖 2 顯示 DMO 及各統計模型在不同預報時間的表現。我們發現相對濕度在下午(約 15-18、39-42 及 63-66 小時預報)的誤差較大,經應用統計模型後,其平均 RMSE 雖得到明顯改善,但仍出現峰值,顯示電腦模式對捕捉下午相對濕度變化的能力較為遜色,這或與電腦模式未能準確預測日間的雲量變化以至溫度變化有關。

若看空間上的分佈,不論是DMO或各統計模型,內陸地區的RMSE 均較海上的RMSE為高(圖3)。這可能與內陸地區相對濕度的日際變化較 大有關,電腦模式未能準確掌握這變化。從技巧上來看,各統計模型, 尤其MLR及MKF(圖3(d)及(e)),均可有效把DMO相對濕度預測與相對濕 度分析場的差異拉近。

4.1.3 個案分析

(a) 天氣形勢

一道廣闊雲帶於2011年3月30日覆蓋南海北部及廣東沿岸地區, 香港多雲及有幾陣雨。但受華南沿岸的一道高壓脊影響,3月31日轉為 大致天晴及非常乾燥。當日下午天文台的相對濕度降至百分之25,是自 1986年以來3月份的最低相對濕度。圖4為2011年3月31日的香港時 間08時的地面天氣圖,而圖5為同一時間於香港的溫熵圖,可見當天 大氣低層十分乾燥。而在隨後一兩天,高壓脊仍持續影響香港。

(b) 統計模型的表現

3月29日12 UTC 的 Meso-NHM 預測3月30日當天香港吹東風 及雲量較多,DMO 相對濕度預測約在百分之60 左右(圖6 橙色線)。雖 然當天錄得微雨,乾燥的氣團仍能使天文台總部自動氣象站所屬網格點 的分析相對濕度下降至百分之40 以下(圖6 粉紅色線)。Meso-NHM 的 DMO 預測未能準確捕捉當天相對濕度的驟降,而 MLR 及 MKF 亦未能 在當天發揮修正作用。但對3月30日12 UTC(即香港時間20時)的 Meso-NHM 預測,MKF 能作出正偏差的調整,並顯示3月31日當天的 相對濕度可在百分之50 以下,其改善率達30%以上。相反,MLR 的表 現並不理想。但值得注意的是,MKF 始終存在滯後的現象,若 DMO 相 對濕度預測的正負偏差每天在變,MKF 的表現亦未必理想。MKF 在4 月1日的表現便是一個例子。MKF 仍對 Meso-NHM 的預測作出正偏差 的調整,但實際的正偏差已減少,甚至出現負偏差。

4.2 風

4.2.1 不同季節的比較

DMO 10 米緯向風在全年的平均 RMSE 約為 2.18 米/秒,而各模型 在全年的平均 RMSE 則在 1.18 至 1.21 米/秒之間,顯著校正 DMO 10 米 緯向風的程度高達 45% (表 4)。DMO 10 米經向風預測方面,全年的平 均 RMSE 約為 1.90 米/秒,而各模型在全年的平均 RMSE 在 1.08 至 1.12 米/秒之間,顯著校正 DMO 10 米經向風的程度亦達 40%以上(表 5),表 示統計模型可有效校正電腦模式的系統誤差。

若以季節作比較,我們發現 DMO 10 米緯向風及 10 米經向風經各統計模型修正後,其春季的平均 RMSE 仍較其他季節的平均 RMSE 稍 大,這或與春季的天氣系統轉變較快有關。

另外,表6及表7分別列出改善10米緯向風及10米經向風預測 的 MLR及 MKF 在四季及全年的最佳因子組合。在10米緯向風中,最 佳因子組合以10米緯向風及10米經向風組成的二元 MLR/MKF (亦即 2LR及2KF)為多。而在10米經向風中,每季的最佳因子組合均有改變, 但多包括10米緯向風、10米經向風、2米溫度或2米相對濕度(表7)。 t-測試顯示2LR/2KF 跟 MLR/MKF 之間的表現並沒有明顯分別(表4及 5),未達5%顯著水平。因此,我們認為以10米緯向風及10米經向風 組成的2LR/2KF 已足夠改善風的預測,無需每季轉換因子組合。此外, 2KF 的最高 RMSE 及平均 ME 普遍較少,2KF 應是最佳的模型改善風的 預測。

4.2.2 時間及空間的變化

圖7及8顯示雖然各統計模型能有效減低模式本身的系統偏差, 但經修正後的10米緯向風及經向風的平均RMSE在日間(約15-21、39-45 及63-69小時預報)仍出現峰值,顯示模式對預測日間10米緯向風及經 向風的強度轉變較為遜色,這與一般認為模式未能準確掌握日照變化(例 如影響海風的出現及強度)吻合。

若看空間上的分佈,不論是DMO或各統計模型,緯向風及經向風 在海上的RMSE均較內陸地區的RMSE為高(圖9及10)。由於受地形影 響,內陸地區的風勢較弱,而海面的風勢較強,後者相對會有較大誤差。 此外,海面上的分析場主要基於陸地自動氣象站資料經Cressman方法生 成,因此會較實際數值為小,並與DMO有較大的差別。但無論如何,各 統計模型均可有效地把DMO預測與分析場的差異拉近。

4.2.3 個案分析

(a) 天氣形勢

一道冷鋒於 2010 年 12 月 25 日橫過華南沿岸地區,隨後的強烈冬 季季候風為該區帶來寒冷的天氣(圖 11)。本港當日日間北風開始增強, 天氣轉冷,天文台在當日下午發出寒冷天氣警告及在晚間發出強烈季候 風信號。橫瀾島自動氣象站於 12 月 26 日早上錄得的十分鐘平均風速曾 一度達強風水平。

(b) 統計模型的表現

圖 12 顯示 Meso-NHM 預測 12 月 25 日黃昏風勢開始增強, 25 日 晚上及 26 日早上橫瀾島自動氣象站所屬網格點的預測風速上升至約 12 米/秒(圖 12 橙色線)。分析風亦顯示該網格點的風勢於 26 日早上出現峰

值(圖 12 粉紅色線)。DMO 風速普遍較分析風速為高,表示模式高估是 次北風的強度,而 2KF 能把它修正至貼近分析場(圖 12 紫色線),2LR 在 25 日及 26 日的表現則略為遜色(圖 12 藍色線)。

5. 總結與討論

本文比較了多個常用統計模型,包括一元線性回歸(SLR)、多元線 性回歸(MLR)、一元卡爾曼濾波(SKF)及多元卡爾曼濾波(MKF)在改善數 碼相對濕度及風向風速預測的表現。結果顯示,以2米相對濕度及700hPa 相對濕度組成的二元 MKF 是最有效修正相對濕度數碼預測的方法,而 以10米緯向風及10米經向風組成的二元 MKF 則對修正風向風速(以10 米緯向風及10米經向風表示)數碼預測最為明顯。

雖然每季使用該季最佳因子組合組成的 MKF 可達最佳修正效 果,但在統計學上,它們跟由全年數據選出的最佳因子組合的 MKF 並 沒有顯著差別。因此在業務運作上,本研究得出的全年最佳因子組合的 MKF 已經較為合適。此外,MKF 可不受電腦模式升級變化的影響,亦 不需保存大量的歷史數據,在業務運作上較為可取。日後我們可再進一 步調校 MKF 內的可變參數,以試驗它對天氣驟變情況作出修正的快慢 反應,尋求更佳效果。

鳴謝

本文作者衷心感謝香港城市大學周文教授的支持及意見,同時亦 感謝林日榮先生為處理自動氣象站數據及分析天文台的中尺度模式 Meso-NHM預報產品提供技術支援。本文所用的廣東省自動氣象站資料 是由廣東省氣象局提供,特此鳴謝。

参考文獻

- [1] 林日榮、李月嬋、陳世倜及葉曉峰:應用「模式輸出統計」校正 數碼氣溫預報,第二十五屆粵港澳氣象科技研討會,香港,2011 年1月26-28日 (http://www.weather.gov.hk/publica/reprint/r948.pdf)
- [2] Wong, W. K., 2010: Development of Operational Rapid Update Non-hydrostatic NWP and Data Assimilation Systems in the Hong Kong Observatory, The 3th International Workshop on Prevention and Mitigation of Meteorological Disasters in Southeast Asia, 1-4 March 2010, Beppu, Japan. (http://www.hko.gov.hk/publica/reprint/r882.pdf)
- [3] Cressman, G.P., 1959: An operational objective analysis system. *Monthly Weather Review*, **87**, 367-372.
- [4] Welch, Greg and Gary Bishop, 2001: An Introduction to the Kalman Filter, University of North Carolina at Chapel Hill, Department of Computer Science, Chapel Hill, NC 27599-3175, 47pp.
- [5] Sakamoto, Y., Ishiguro, M., and Kitagawa G., 1986: Akaike Information Criterion Statistics. D. Reidel Publishing Company.
- [6] Tetko, I.V., D.J. Livingstone and A.I. Luik, 1995: Neural network studies. 1. Comparison of Overfitting and Overtraining, J. Chem. Inf. Comput. Sci., 35, 826-833.

表1. 多元統計模型的待選因子

高度	待選因子
地面	2米溫度、2米相對濕度、平均海平面氣壓、10米緯向風及10米經向風
925hPa	温度、相對濕度、緯向風、經向風、垂直速度及位勢高度
850hPa	温度、相對濕度、緯向風、經向風、垂直速度、位勢高度、相對渦度及相對輻散
700hPa	温度、相對濕度、緯向風、經向風、垂直速度、位勢高度及相對輻散
500hPa	温度、相對濕度、緯向風、經向風、垂直速度及位勢高度

		DMO	SLR	MLR	SKF	MKF
山禾	平均 RMSE (%) ¹	10.45	10.07	9.15	10.27	9.40
	最高 RMSE (%) ¹	19.60	17.10	16.42	16.51	16.20
	平均 ME (%) ¹	2.80	-2.64	-1.93	-1.13	-0.69
秋子	改善率2	不適用	4%	12%	2%	10%
	與 DMO 的 t - 測試 ³	不適用	×	✓	×	✓
	與最佳模型的 t - 測試 ⁴	✓	✓	不適用	✓	×
	平均 RMSE (%) ¹	11.74	10.57	9.08	9.67	8.91
	最高 RMSE (%) ¹	19.98	16.50	15.01	13.98	13.20
欠香	平均 ME (%) ¹	2.91	-1.94	-0.87	-0.38	-0.43
~+	改善率2	不適用	10%	23%	18%	24%
	與 DMO 的 t - 測試 ³	不適用	✓	\checkmark	\checkmark	\checkmark
	與最佳模型的t-測試 ⁴	\checkmark	×	×	×	不適用
	平均 RMSE (%) ¹	10.98	8.05	7.59	8.05	7.73
	最高 RMSE (%) ¹	22.38	13.19	12.53	14.08	14.37
去香	平均 ME (%) ¹	6.77	-0.76	-1.79	0.41	-0.003
電子	改善率2	不適用	27%	31%	27%	30%
	與 DMO 的 t - 測試 ³	不適用	✓	\checkmark	\checkmark	\checkmark
	與最佳模型的 t - 測試 ⁴	\checkmark	×	不適用	×	×
	平均 RMSE (%) ¹	10.75	6.77	5.67	5.53	5.13
	最高 RMSE (%) ¹	23.34	13.60	14.31	11.95	11.76
百委	平均 ME (%) ¹	7.89	3.11	1.96	0.97	0.65
及于	改善率 ²	不適用	37%	47%	49%	52%
	與 DMO 的 t - 測試 ³	不適用	✓	✓	✓	✓
	與最佳模型的 t - 測試 ⁴	\checkmark	×	×	×	不適用
	平均 RMSE (%) ¹	11.17	8.85	8.64	8.73	8.69
	最高 RMSE (%) ¹	18.47	13.26	13.02	13.00	12.70
全年	平均 ME (%) ¹	5.15	-0.14	-0.02	-0.10	-0.13
T	改善率 2	不適用	21%	23%	22%	22%
	與 DMO 的 t - 測試 3	不適用	✓	✓	✓	✓
	與最佳模型的 t - 測試 ⁴	\checkmark	×	不適用	×	×

表 2. 各統計模型在改善相對濕度(%)的表現及與DMO的比較

1 比較各統計模型的表現,以最少值(灰格及粗體顯示)的平均RMSE、最高RMSE及平均ME為佳

¹ 比較各統計模型的表現,以取少值(次格及粗體顯示)的平均RMSE、取高RMSE及平均ME為住
² 改善率 = (個別統計模型的平均RMSE - DMO的平均RMSE) / (DMO的平均RMSE) × 100%
³ 個別統計模型的平均RMSE與DMO的平均RMSE的t-測試,若兩這差異達5%顯著水平會顯示「✓」,若未達5% 顯著水平則顯示「×」
⁴ 最佳統計模型的平均RMSE與DMO/其他統計模型的平均RMSE的t-測試,若兩這差異達5%顯著水平會顯示 「✓」,若未達5%顯著水平則顯示「×」

MLR				
秋季	2米相對濕度,10米緯向風,10米經向風,700hPa相對濕度			
冬季	2米相對濕度,平均海平面氣壓,925hPa相對濕度,700hPa相對濕度,700hPa位勢高度			
春季	2米相對濕度,700hPa 緯向風			
夏季	2米相對濕度,10米經向風,500hPa相對濕度			
全年	2米相對濕度,700hPa相對濕度			
MKF				
秋季	2米相對濕度,10米緯向風,10米經向風,850hPa緯向風,700hPa相對濕度			
冬季	2米相對濕度,925hPa相對濕度			
春季	2米相對濕度,700hPa 緯向風			
夏季	2米相對濕度,10米經向風,850hPa溫度,500hPa相對濕度			
全年	2米相對濕度,700hPa相對濕度			

表 3. 相對濕度在MLR及MKF中的最佳因子組合

		DMO	2LR	MLR	2KF	MKF
	平均 RMSE (米/秒) ¹	2.14	1.04	1.03	1.00	_5
私委	最高 RMSE (米/秒) ¹	4.73	2.54	2.43	2.40	_5
	平均 ME (米/秒) ¹	-1.68	-0.29	-0.11	-0.20	_5
秋子	改善率2	不適用	51%	52%	53%	_5
	與 DMO 的 t - 測試 ³	不適用	✓	✓	✓	_5
	與最佳模型的 t - 測試 ⁴	✓	*	×	不適用	_5
	平均 RMSE (米/秒) ¹	2.34	1.18	_6	1.18	1.16
	最高 RMSE $(\%/秒)^1$	4.88	2.46	_6	2.35	2.37
久季	平均 ME (米/秒) ¹	-1.75	0.19	_6	0.17	0.18
~+	改善率2	不適用	49%	_6	50%	50%
	與 DMO 的 T - 測試 ³	不適用	\checkmark	- ⁶	\checkmark	\checkmark
	與最佳模型的T-測試 ⁴	\checkmark	×	-6	×	不適用
	平均 RMSE $(\%/秒)^1$	1.77	1.23	_6	1.20	_5
	最高 RMSE (米/秒) ¹	3.45	2.87	_6	2.87	_5
去香	平均 ME (米/秒) ¹	-0.33	0.22	_6	0.11	_5
个子	改善率2	不適用	31%	_6	32%	_5
	與 DMO 的 t - 測試 ³	不適用	\checkmark	- ⁶	\checkmark	_5
	與最佳模型的 t - 測試 ⁴	\checkmark	×	-6	不適用	_5
	平均 RMSE (米/秒) ¹	1.56	0.94	0.92	0.96	0.92
	最高 RMSE (米/秒) ¹	3.24	2.10	2.10	2.10	1.97
百委	平均 ME (米/秒) ¹	0.11	-0.2	-0.14	-0.18	-0.08
及于	改善率2	不適用	40%	41%	38%	41%
	與 DMO 的 t - 測試 3	不適用	\checkmark	✓	✓	\checkmark
	與最佳模型的 t - 測試 ⁴	\checkmark	×	×	×	不適用
	平均 RMSE (米/秒) ¹	2.18	1.21	1.21	1.18	_5
	最高 RMSE ($\#/$ 秒) ¹	4.17	2.54	2.48	2.46	_5
全年	平均 ME (米/秒) ¹	-0.98	-0.05	-0.03	-0.04	_5
т т	改善率2	不適用	45%	45%	46%	_5
	與 DMO 的 t - 測試 ³	不適用	\checkmark	\checkmark	\checkmark	_5
	與最佳模型的 t- 測試 ⁴	✓	×	×	不適用	_5

表 4. 各統計模型在改善10米緯向風(米/秒)的表現及與DMO的比較

 ¹比較各統計模型的表現,以最少值(灰格及粗體顯示)的平均RMSE、最高RMSE及平均ME為佳
²改善率 =(個別統計模型的平均RMSE - DMO的平均RMSE)/(DMO的平均RMSE)×100%
³個別統計模型的平均RMSE與DMO的平均RMSE的t-測試,若兩這差異達5%顯著水平會顯示「✓」,若未達5% 顯著水平則顯示「×」 4

最佳統計模型的平均RMSE與DMO/其他統計模型的平均RMSE的t-測試,若兩這差異達5%顯著水平會顯示「✓」,若未達5%顯著水平則顯示「×」

⁵ MKF的最佳因子組合與2KF相同,即2米緯向風及2米經向風
⁶ MLR的最佳因子組合與2LR相同,即2米緯向風及2米經向風

		DMO	2LR	MLR	2KF	MKF
秋季	平均 RMSE (米/秒) ¹	1.45	0.96	-6	0.95	_5
	最高 RMSE (米/秒) ¹	3.25	1.92	_6	1.95	_5
	平均 ME (米/秒) ¹	-0.37	-0.24	_6	-0.18	_5
	改善率2	不適用	34%	_6	34%	_5
	與 DMO 的 t - 測試 3	不適用	✓	_6	✓	_5
	與最佳模型的 t - 測試 ⁴	✓	×	_6	不適用	_5
	平均 RMSE (米/秒) ¹	1.65	1.02	1.01	1.02	1.00
	最高 RMSE (米/秒) ¹	3.74	2.46	2.60	2.58	2.32
久季	平均 ME (米/秒) ¹	0.28	0.03	-0.01	0.04	-0.004
~+	改善率2	不適用	39%	39%	38%	40%
	與 DMO 的 t - 測試 ³	不適用	✓	✓	\checkmark	✓
	與最佳模型的 t - 測試 ⁴	\checkmark	×	×	×	不適用
	平均 RMSE (米/秒) ¹	1.87	1.24	1.12	1.12	1.11
	最高 RMSE (米/秒) ¹	3.57	2.87	2.45	2.68	2.59
去委	平均 ME (米/秒) ¹	-0.51	-0.30	0.16	-0.12	0.06
電子	改善率 ²	不適用	34%	40%	40%	41%
	與 DMO 的 t - 測試 3	不適用	\checkmark	✓	✓	✓
	與最佳模型的 t - 測試 ⁴	\checkmark	×	×	×	不適用
	平均 RMSE (米/秒) ¹	1.63	0.90	0.90	0.89	0.85
	最高 RMSE (米/秒) ¹	3.99	2.10	2.14	2.13	1.83
百委	平均 ME (米/秒) ¹	-0.10	0.13	0.13	0.12	0.10
及う	改善率 ²	不適用	44%	45%	45%	48%
	與 DMO 的 t - 測試 3	不適用	✓	✓	✓	✓
	與最佳模型的t-測試 ⁴	✓	×	×	×	不適用
	平均 RMSE (米/秒) ¹	1.90	1.11	1.12	1.08	1.08
	最高 RMSE (米/秒) ¹	3.63	2.35	2.33	2.24	2.20
全年	平均 ME (米/秒) ¹	0.00	-0.05	-0.08	-0.05	-0.02
- T 1	改善率2	不適用	41%	41%	43%	43%
	與 DMO 的 t - 測試 ³	不適用	✓	✓	✓	✓
	與最佳模型的t-測試 ⁴	✓	×	×	×	不適用

表 5. 各統計模型在改善10米經向風(米/秒)的表現及與DMO的比較

 ¹比較各統計模型的表現,以最少值(灰格及粗體顯示)的平均RMSE、最高RMSE及平均ME為佳
²改善率 =(個別統計模型的平均RMSE - DMO的平均RMSE)/(DMO的平均RMSE)×100%
³個別統計模型的平均RMSE與DMO的平均RMSE的t-測試,若兩這差異達5%顯著水平會顯示「✓」,若未達5% 顯著水平則顯示「×」 4

最佳統計模型的平均RMSE與DMO/其他統計模型的平均RMSE的t-測試,若兩這差異達5%顯著水平會顯示「✓」,若未達5%顯著水平則顯示「×」

⁵ MKF的最佳因子組合與2KF相同,即2米緯向風及2米經向風
⁶ MLR的最佳因子組合與2LR相同,即2米緯向風及2米經向風

MLR				
秋季	10 米緯向風, 500hPa 位勢高度			
冬季	10 米緯向風,10 米經向風			
春季	10 米緯向風,10 米經向風			
夏季	10 米緯向風,10 米經向風,500hPa 緯向風			
全年	10 米緯向風,2米溫度			
MKF				
	MKF			
 秋季	MKF 10 米緯向風,10 米經向風			
秋季 冬季	MKF 10 米緯向風,10 米經向風 10 米緯向風,10 米經向風,925hPa 緯向風			
秋季 冬季 春季	MKF 10 米緯向風,10 米經向風 10 米緯向風,10 米經向風,925hPa 緯向風 10 米緯向風,10 米經向風			
秋季 冬季 春季 夏季	MKF 10米緯向風,10米經向風 10米緯向風,10米經向風,925hPa 緯向風 10米緯向風,10米經向風 10米緯向風,500hPa 緯向風			

表 6. 10米經緯向風在MLR及MKF中的最佳因子組合

表 7. 10米經向風在MLR及MKF中的最佳因子組合

MLR					
秋季	10 米經向風,10 米緯向風				
冬季	10 米經向風,2米相對濕度				
春季	10 米經向風,2米溫度,500hPa 相對濕度				
夏季	10 米經向風,700hPa 溫度				
全年	10 米經向風,2米相對濕度				
	MKF				
秋季	10 米經向風,10 米緯向風				
冬季	10 米經向風,2米溫度,2米相對濕度				
春季	10 米經向風,2米溫度				
夏季	10 米經向風,700hPa 相對濕度				
全年	10 米經向風,2 米溫度				

圖 1. 香港天文台及廣東省氣象局自動氣象站的分佈

圖 2. DMO, SLR、SKF、MLR及MKF在不同預報時間 相對濕度預測的平均RMSE(%)

圖 3. (a) DMO、(b) SLR、(c) SKF、(d) MLR及(e) MKF相對濕度預測 的平均RMSE(%)分佈圖

22°35'N

22°30'N

22°25'N

22°20'N

9.6

9H

8.6

0.4

8.8

8.28 -8.6

10.0 10.1 10.3 10.6 10.5 27

9,3 9.5

8.8 8/

.8.8

9.3

83

9.3

8.7

8.9

22°40'N -

9.7 9.8 10.0 10.2 10.0 9.4 9.0

8.6

8.5

9.0

82

g.8.6

-8.1

9,1 9.2

22°40'N

22°35'N

22°30'N

22°25'N

22°20'N

8.9

8.67

9.0

8.5

圖 4. 2011年3月31日香港時間08時的地面天氣圖

圖 5. 2011年3月31日香港時間08時的香港溫熵圖

圖 6. 2011年3月29日至4月1日(香港時間)香港天文台總部自動氣象站所屬網格點 的分析相對濕度(ANA)、電腦模式在每天12UTC預報未來24小時的DMO相對濕度、 以及經MLR及MKF修正後的相對濕度預測時間序列

圖 7. DMO、2LR、2KF、MLR及MKF在不同預報時間 10米緯向風預測的平均RMSE(米/秒)

圖 8. DMO、2LR、2KF、MLR及MKF在不同預報時間 10米經向風預測的平均RMSE(米/秒)

1.5 1.3 1.3 1.5 1.9 2.42.1 1.7 1.2 1.4 3.1

43

114°10'E

114°20'E

114°30'E

22°40'N

55**.**52,N

22*15'N 22*10'N

113°50'E

114°E

1 1.5 2 (a) DMO

圖 9. (a) DMO、(b) 2LR、(c) 2KF、(d) MLR及(e)MKF 10 米 緯 向風 預測的平均RMSE(米/秒)分佈圖

1.2 2.1

114°20'E

114°30'E

ĩ1.0

114°10'E

22°40'N

SS+30'N

22°25'N

22°15'N 22°10'N

113°50'E

114°E

(a) DMO

圖 10. (a) DMO、(b) 2LR、(c) 2KF、(d) MLR及(e)MKF 10米經向風 預測的平均RMSE(米/秒)分佈圖

圖 11. 2010年12月25日香港時間08時的地面天氣圖

圖 12. 2010年12月24日至12月27日(香港時間)橫瀾島自動氣象站所屬網格點的分析風速(ANA)、電腦模式在每天12UTC預報未來24小時的DMO風速、以及經2LR及 2KF修正後的風速預測時間序列